
ISeCure
The ISC Int'l Journal of
Information Security

November 2021, Volume 13, Number 3 (pp. 1–9)

http://www.isecure-journal.org

Selected Paper at the ICCMIT’21 in Athens, Greece

A Review Study on SQL Injection Attacks, Prevention, and

Detection ∗∗

Mona Alsalamah 1, Huda Alwabli 1, Hutaf Alqwifli 1, and Dina M. Ibrahim 1,2,∗
1Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia.
2Computers and Control Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt.

A R T I C L E I N F O.

Keywords:

Cyber Security, Web-Based
System, SQL Injection

Type: Research Article

doi:
10.22042/ISECURE.2021.0.0.0

dor: 20.1001.1.20082045.2021.

13.3.1.8

A B S T R A C T

The functionality of a web-based system can be affected by many threats.

In fact, web-based systems provide several services built on databases. This

makes them prone to Structured Query Language (SQL) injection attacks. For

that reason, many research efforts have been made to deal with such attacks.

The majority of the protection techniques adopt a defense strategy which

results to provide, in extreme response time, a lot of positive rates. Indeed,

attacks by injecting SQL are always a serious challenge for the web-based

system. This kind of attack is still attractive to hackers and it is in growing

progress. For that reason, many researches have been proposed to deal with

this issue. The proposed techniques are essentially based on a statistical or

dynamic approach or using machine learning or even deep learning. This paper

discusses and reviews the existing techniques used to detect and prevent SQL

injection attacks. In addition, it outlines challenges, open issues, and future

trends of solutions in this context.

© 2020 ISC. All rights reserved.

1 Introduction

With the exponential growth of web advancements,
the Web application became one of the most

mainstream contact streams. In data frameworks,
knowledge is a big challenge. To get input from users,
many associations run their transactions on database-
appended web apps. The Web application is an im-
portant source of knowledge for any company to ac-

∗ Corresponding author.
∗∗The ICCMIT’21 program committee effort is

highly acknowledged for reviewing this paper.

Email addresses: 421214861@qu.edu.sa,

421200396@qu.edu.sa, 421200326@qu.edu.sa,
d.hussein@qu.edu.sa, dina.mahmoud@f-eng.tanta.edu.eg

ISSN: 2008-2045 © 2020 ISC. All rights reserved.

cess simple business process information and to be
commonly used in numerous applications. With the
ubiquity of web apps, the web environment has vari-
ous security challenges and web application vulner-
abilities are growing. The weakness in the approval
of details is where client feedback is included in the
product without affirming its authenticity.

The Standardized Query Language, which is the
basic programming language for social database de-
velopment, is SQL. It is a language of order and regu-
lation used to construct, modify, delete, and retrieve
knowledge and frameworks that provide the frame-
work of the social database. In basic terms, SQL IN-
JECTION is the method of transferring SQL code
into interactive web applications. User information

ISeCure



2 A Review Study on SQL Injection Attacks, Prevention, and Detection — Alsalamah et al.

such as form is acknowledged and then this input
is used in database queries, but in a manner that
was not intended. The key purpose is to trick the
database into running malicious code because of the
application’s bad design.

To include useful information, most websites pro-
vide a series of fields for communicating with users.
To put the data within the database, the collection
of fields serves as carriers. Search fields, username
and password fields, credit card data fields, etc., for
instance. Successful Structured Query Language In-
jection attack (SQLIA) leads to an unwanted view
or alteration of the database’s private data: the en-
tire database crashes and, in certain instances, the
vicious attacker gets the database’s administrative
privileges. SQLIA is typically divided into two key
groups, namely First-Order SQLIA and Second-Order
SQLIA. The Second-Order SQLIA technique is a com-
plicated process. The Open Network Application Pro-
tection Project has named SQLIA as the most serious
security threat for 2017 (OWASP) [1].

The malicious person who wishes to insert mali-
cious data must implement the file in the SQL pro-
gramming language. During the attack, malicious
data that is harmfully coded is introduced into the
database. It is also better to prevent an intrusion at
an early stage to minimize data loss. Web-based ap-
plications on a network are protected by Intrusion
Prevention Mechanisms, Firewalls, or Stable Socket
Layers. However, because of HTTP’s complex re-
quest/response mechanism, protection becomes mini-
mal or non-existent shown in Table 1.

Our paper consists of the following sections: Sec-
tion 2 presents the background of the SQL injection
attack. In Section 3, types of SQL injection attacks
are illustrated. While in Section 4 the causes of SQL
injection in the database are explained. Section 5
demonstrates the related work of existing techniques
to detect and prevent SQL injection attacks from mul-
tiple studies. In Section 6, we discuss open issues and
future trends for preventing and detecting SQL in-
jection attacks. Finally, the conclusions of this paper
are drawn in Section 7.

2 Background of SQL Injection
Attack

As HTTP queries, a web application accepts input
and produces SQL statements as output. The SQL
statements created are sent to the database of the web
application to collect or store or change the values ac-
cording to the user’s purpose. Here, HTTP requests
are specifically interested in SQL statement build-
ing. The SQL Injection attack occurs when HTTP
requests are not approved. The malicious user will

manage unsecured HTTP requests to form a new
statement that causes the user harm. The source
procedure, for example, uses an HTTP request to
create a SQL statement [2]. Salary= “Select*from
empl details where empl id=”

As the above code is given as an entry to the web
server, it uses an HTTP request to produce the out-
put. The HTTP request is not checked and is used for
the creation of the SQL statement directly. Here, to
launch an attack, the vicious user will take advantage.
The following is an illustration of the altered version of
the vicious user’s original HTTP submission. Rather
than submitting real input “employeeid = 200”, the
vicious user appends a string “update empl details set
emplsalary = emplsalary * 2” to the input. From a
malicious HTTP message, the SQL statement gener-
ates is POST/employee.jsp HTTP/1.1 “Select * from
empl details where empl id = 200; update empl details
set emplsalary = emplsalary * 2;”.The database is
exploited by this argument and doubles the salary of
an employee [2].

Other types of attacks can also be initiated by
the vicious user, such as adding an intruder account
to the database, misleading the signature identifica-
tion system, etc. The vicious consumer concatenates
the real input with the following example a string
“CREATE USER admin IDENTIFIED BY passad-
min” which creates a new account “admin” with pass-
word “passadmin” and the SQL statement generated
from the malicious HTTP request is “Select * from
empl details where empl id = 200; CREATE USER
admin IDENTIFIED BY passadmin;”. For the new
user “admin”, Different functions may be allocated
by the malicious declaration “GRANT CONNECT
TO admin”. The statement created from the string
recently attached is POST/employee.jsp HTTP/1.1
“Select * from empl details where empl id= 200; CRE-
ATE USER admin IDENTIFIED BY passadmin;
GRANT CONNECT TO admin;” The vicious user
gets power over the database to carry out different
manipulations after executing the sentence.

3 Types of SQL Injection Attacks

This section will investigate the most important types
of SQL attacks Figure 1 show the display of the types:

3.1 Error-Based SQL Injection

The most popular form of SQL injection flaw is error-
based SQL injection. It is based, through the user
interface, on unintended commands or invalid input.
As a result, the database server responds with an
error that may include target information such as
structure, version, operating system, or returns the
complete results of the query [3].

ISeCure



November 2021, Volume 13, Number 3 (pp. 1–9) 3

Table 1. Comparison of top 10 risk between 2013 and 2017

Top 10 (2013) Change Top 10 (2017)

A1: Injection None A1: Injection

A2: Broken Authentication and Session Management None A2:Broken Authentication

A3: Cross-Site Scripting (XSS) Decrease A3: Sensitive Data Exposure

A4: Insecure Direct Object References [Merged+A7] A4: XML External Entities (XXE)[NEW]

A5: Security Misconfiguration Decrease A5: Broken Access Control [A4+A7 Merged]

A6: Sensitive Data Exposure Increase A6: Security Misconfiguration

A7: Missing Function Level Access Control [Merged+A4] A7: Cross-Site Scripting (XSS)

A8: Cross-Site Request Forgery (CSRF) Deleted A8:Insecure Deserialization[NEW]

A9: Using Components with Known Vulnerabilities None A9:Using Components with Known Vulnerabilities

A10: Unvalidated Redirects and Forwards Deleted A10:Insufficient Logging& Monitoring [NEW]

3.2 Boolean-Based Blind SQL Injection

A Boolean query in this form of SQL injection attack
allows the program to provide a different answer
to a true or invalid database result. It operates by
enumerating the characters that must be removed
from the text. The reply displays whether or not the
user ID is present in the database [4].

3.3 Time-Based Blind SQL Injection

SQL queries are sent to the database in this form
of SQL injection attack, causing it to wait for the
specified period represented in seconds before reacting.
From the answer time, the attacker will know if the
outcome of the query is true or false.

3.4 Union-Based SQL Injection

Results returned by the initial question shall be ex-
panded by the operator of the Union. In this way,
where the form is the same as the original, users are
allowed to run two or more sentences. Let’s evaluate
this example for this purpose [3]: Example: SELECT
first name, last name FROM users UNION SELECT
Username, Password FROM login [3]. In this exam-
ple, the SELECT command is used and the following
conditions should be fulfilled in order exploit to work:

• Each SELECT statement within the union has
the same number of columns.

• The columns must also have similar data types.
• The columns in each SELECT statement are in

the same order.

In this example names of the columns in the table
users are first name and last name. The names of
the columns in the table login are username and
password. The query is successful when it has the
correct number of columns.

Figure 1. Type of SQL injection [1]

3.5 Out-Of-Band SQL Injection

This is a less popular form of SQL injection attack,
owing to the fact that it relies on database server
features being allowed. This form of attack happens
when the attacker is unable to carry out both the
attack and the data collection on the same channel.

3.6 Blind SQL Injection

A blind attack is a type of SQL injection in which no
error message is displayed. As a result, exploiting it
is more difficult because details are returned when
SQL payloads are provided to the application.

4 Causes of SQL Injection in
Database

SQL injection flaws impact not only the data pro-
tection of individual websites but also the database
system as a whole, as well as the network system that
hosts similar applications. In extreme cases, it can
cause large areas of web pages to hang, viruses to
spread, privacy leaks, remote server control, and net-
work paralysis. Furthermore, SQL injection flaws are

ISeCure



4 A Review Study on SQL Injection Attacks, Prevention, and Detection — Alsalamah et al.

often used as a starting point for network penetration
attacks, which strike the target network in stages.
Hackers aren’t happy with only manipulating an ap-
plication or a server; they want to take over the entire
network, including access control, to gain access to
the network’s internal sensitive information [5].

Communication between the user and the web ap-
plication is important in web applications. The con-
sumer must send data to the server as part of the
interaction phase. After receiving data from the user,
the web application queries the database system to
conditionally show the data to the client. Users usu-
ally send data to the server using the GET, POST,
and Cookie methods have shown in Table 2. The GET
approach involves explicitly writing the data to be
sent in the URL, and it is often used to send less data
when browsing. The POST approach is commonly
used as a form submission and is often used when
users need to submit data, which is typically a large
amount of data. Cookies are small pieces of data that
a web application saves in the user’s browser buffer.
They’re typically used to store user identities or mon-
itor their surfing habits [5].

Most Web apps stored the data in SQL databases.
Almost every Web application has a SQL database
running in the background. SQL syntax, like most
other languages, allows database commands to be
combined with customer data. If developers aren’t
careful, user data can be interpreted as commands,
allowing remote users to do more than just input data
into Web applications; they can even run arbitrary
commands on the database.

5 Related Work

In this section, we will present and discuss some of the
related work and many techniques used to prevent and
detect SQL. Authors in [6] offer a simple and powerful
artificial neural network-based technique for SQL
injection detection, which comprises three parts: data
preparation, feature extraction, and model training.
First, 8 types of specialized features are eliminated
from a large volume of SQL injection data, and then
a large amount of real data is utilized to train the
neural network model. Finally, the results of model
training are compared. In this paper, several neural
network models are employed for training. MLP uses
an artificial feature extraction procedure to extract
the resulting features from the URL as the model
input. Long short-term memory (LSTM) is frequently
employed in comparative tests. The URL is explicitly
transformed into a vector by LSTM as the model
input. The results of the experiments imply that
Multi-Layer Perceptron (MLP). The identifying effect
of MLP is substantially greater than that of LSTM.

The authors of [7] have proposed a method for de-
tecting and avoiding these attacks that employ the
Knuth-Morris-Pratt (KMP) pattern matching algo-
rithm. To detect any malicious code, the algorithm
was used to align the user’s input string with the in-
jection string’s saved template. The application was
created using the PHP scripting language and the
Apache XAMPP Server. The level of security of the
methodology was calculated using several test cases
of SQL injection, cross-site scripting (XSS), and em-
bedded injection assaults. The results revealed that
the proposed solution could effectively detect and
avoid attacks, record the attack in the database, block
the device using the mac address, and generate an
alert message. As a result, the suggested approach
has been more successful in detecting and avoiding
SQL injection.

The authors of the study described in [5] offer a
component-based strategy to reduce the occurrence
of wrong effects and make it easier to enhance the
proposed solution. The accuracy of the suggested
technique is determined using three different types of
software. An observational assessment is undertaken
on three unsafe custom websites to test the feasibil-
ity of the planned research. The experiment findings
yielded significant results in terms of high precision.
On the other hand, the suggested approach offers
higher capabilities for evaluating page replies based on
four alternative strategies. Furthermore, even though
modest restrictions are put on the supplied data, the
proposed approach is the only one that performs SQL
stored procedure assaults and circumvents login au-
thentication. The only suggested solution will effec-
tively finish the SQL injection attacks stored proce-
dure and conduct vulnerability prediction by analyz-
ing the page’s internal structure, according to the
analysis of the results. Even though the proposal is
capable of sending a second-order SQL injection at-
tack on a variety of injection parameters regularly,
this attack does not result in a vulnerability.

The authors of study [8] presented a SQL injec-
tion vulnerability scanner based on black-box testing,
with four components: crawling, attacking, analysis,
and reporting, each with subcomponents. Although
there are many SQL injection vulnerability scanners
available, the majority of them need to improve their
effectiveness because they have issues such as false
alarms. The suggested SQL injection vulnerability
scanner intends to disclose the greatest number of vul-
nerabilities with the fewest false alarms. The study’s
strength is that it includes an algorithm for the pro-
posed SQL injection vulnerability scanner, as well
as its implementation in JavaScript and testing on
three different target applications. The research con-
cludes with a comparison of the suggested scanner

ISeCure



November 2021, Volume 13, Number 3 (pp. 1–9) 5

Table 2. Features of GET and POST methods

Delivery method Features

GET Less data is passed when data is explicitly written in the URL.

POST A huge amount of data must be transmitted, and it must be submitted using Form forms or the AJAX POST process.

Cookie The data is huge and sensitive, and it is stored in the user’s browser cache.

to existing scanners, with the findings examined to
demonstrate its efficacy. Combining machine learning
with SQL Injection Attack Detection & Prevention,
as the name says. They created a web application
that exhibits large volumes of learning data utilizing
dictionary words to train a classifier using Applied
Machine Learning Predictive Analytics with SQLIA
Detection and Prevention. The trained classifier is of-
fered as a web API for use in a.NET application to in-
tercept SQLIA. Unauthorized access to the database
is thus prevented.

They present a methodology for detecting SQL in-
jection attacks based on two methodologies, namely
the fingerprinting method and Pattern Matching,
in [9] this paper, intending to distinguish good SQL
queries from dangerous queries. It considers the de-
crease in processing time for Pattern Matching en-
gines as well as the decrease in false-positive rate.
This framework’s way of operation can be character-
ized as the speedy initial detection and judgment of
incoming SQL queries, as well as for deciding whether
they require an accurate match. As illustrated in Fig-
ure 2, the Rabin fingerprint method is utilized for
first rapid detection and judgment on SQL queries,
and the Aho-Corasick pattern matching algorithm is
used if the query is recognized as illegitimate. This
framework tries to speed up the process of detecting
malicious queries by employing fingerprints before
Pattern Matching.

In [10], the researchers proposed a new approach
that comprises two steps: Tokenizing the query en-
tered by the user is the initial stage in this procedure.
In the tokenization phase, white space, double dashes
(–), sharp sign (#), and all strings before each symbol
are all tokens. In the second stage, each string token
was compared against the contents of a specified lexi-
con once the query was tokenized. The majority of
reserved terms (commands), as well as several logical
operators, are found in the lexicon. The contents of
the lexicon are collected in the majority of injected
commands or sentences in SQL injection attacks. Ta-
ble 3 lists some of the words in the lexicon. It contains
a total of 20 words. When the input question state-
ment is entered, whether or not to detect injection.
The validity of the input data is tested during execu-
tion by comparing it to the contents of the lexicon.
If they are matched to other terms, an attempt at

Figure 2. The proposed approach methodology for detecting

SQL injection attacks based on two methodologies, namely the
fingerprinting method and pattern matching [9]

Table 3. Top 10 OWASP IoT vulnerabilities in 2018

No. Vulnerability

1st Weak, easy to predict, or embedded passwords

2nd Insecure communications services

3rd Insecure ecosystem interface

4th Lack of a secure mechanism for software updates

5th Use of insecure or compromised software components

6th Inadequate privacy protection

7th Insecure data transfer and storage

8th Lack of device management such as support

9th Insecure standard settings

10th Inadequate physical hardening*

SQL injection is made. There will be no injection if
the answer is no. The proposed technique is depicted
in Figure 2.

Using Removing the Parameter Values of SQL
Query, the authors in [11] develop a SQL detection
and prevention approach. The purpose of this strat-
egy is to provide a simple and effective method for
keeping the database secure. Figure 3 depicts the pro-
cess in action. It employs both static and dynamic
analytic methods. This method isn’t altogether new;

ISeCure



6 A Review Study on SQL Injection Attacks, Prevention, and Detection — Alsalamah et al.

rather, it’s a refinement of one that already exists.

[12] is an example. This article investigates the
GreenSQL database firewall’s operating mode and
process. GreenSQL learning’s input model is built
by constructing a patterned input and configurable
whitelist based on a study of the characteristics and
patterns of SQLA instructions, as shown in Figure 4.
GreenSQL’s learning efficiency will be reduced, and
samples will be intercepted in IPS mode, allowing the
context database’s security to be properly maintained.
Modular attack input is realized based on thoroughly
investigating the features of each working mode of
the GreenSQL database, blended with the common
attack methods of SQL, by developing an abstract set
of seven sorts of attacks based on the rule combination
and guidance of these seven sets.

In addition, the authors recommend using query
tokenization to detect and block SQL attack injec-
tion in [13]. The proposed technique is broken down
into six steps. The user enters the settings in the first
stage. The tokenization technique, which is based on
dividing a string into multiple parts, is utilized in
stage 2. In stage 3, two different tokenization strate-
gies are used. The two results from the previous stage
are compared in stage 4. Stage 5 determines whether
or not the user has the authorization to access the
database based on the prior comparison. Finally, the
injection attack is prevented in stage 6. According to
one experiment, query tokenization can identify or
even prevent the majority of frequent SQL injection
attacks. Instead of breaking prepared statements and
query tokenization into two separate processes, the
proposed work can be improved by integrating them
into one process.

The authors of [14] recommend that to cope with
the challenge of identifying and blocking SQL attacks,
they should apply machine learning and the Support
Vector Machine (SVM). This work, like most others,
is based on a dataset. After that, you’ll need to train
SVM on this dataset and then run the test. The
results indicate good detection performance, which is
empirically verified in a huge data context. To deal
with multiple types of SQL injection attacks, this
work can be improved by using a multiclass classifier.
This aids in defining the type of assault that has
occurred, rather than simply alerting whether or not
an attack has occurred. Similarly, in [15], a SQL
injection detection system is proposed as a framework
integrating a natural language processing model with
a deep learning technique. The proposed architecture
improves accuracy while lowering the rate of false
alarms. It also allows the machine to learn the SQL
injection attacks language model automatically. This
option is critical for reducing human intervention

while also providing an appropriate level of defense
against zero-day assaults. The studies are illustrating
some strategies to prevent and detect SQL injection
attacks, as shown in Table 4. below, which previews
the aspects covered in the linked study.

6 Open Issues and Future Trends for
Preventing and Detecting SQL
Injection Attacks

Through surveying the most important work in the
context of SQL injection attacks, we found that this
problem is stills serious and can be harmful to web-
sites. The prosed solution is still enough and needs
more research efforts. The existing research work deal-
ing with the problem of SQL injection attacks can be
divided into four categories which are [17]:

• Based on the static analysis: which is based on
analyzing the traffic to detect this attack.

• Based on dynamic analysis: which is the ex-
tension of the previous type by considering dy-
namic traffic to prevent and detect SQL injec-
tion attacks as soon as they happen.

• Based on machine learning: this kind is trying to
solve the limitation of static as well as dynamic
analysis.

• Based on deep learning: this kind of detection
attack is used since machine learning selection
is done manually which leads to ignoring im-
portant features. Consequently, adopting deep
learning helps to improve notably the previous
three types.

The results of the three types of detection are
still not enough and need more investigation and
improvement. The future trends of SQL injection
attack prevention and detection will concentrate more
on:

• Creating and defining dataset close to the real-
ity to get a more realistic result.

• Using computing power by introducing many
barriers to detect this attack in the advance
stage.

• Measuring the performance of models to im-
prove their efficiency.

These trends are facing many challenges constitut-
ing the weaknesses of the existing methods which
are [17]:

• The false positive and negative rate: linked to
the detection of attack which has to be de-
creased as much as possible.

• The huge amount of training data: which is an
interesting issue in this case that can be tackled
by adopting big data techniques.

• The defeat of partial attack and vulnerabilities:

ISeCure



November 2021, Volume 13, Number 3 (pp. 1–9) 7

Figure 3. The framework of the proposed methodology presented by [11]

Figure 4. The working mode of the GreenSQL database

in fact, most existing solutions can not cover all
types of attacks. On the contrary, SQL injection
is including a big set of attacks type and it is
growing rapidly.

• The weakness of practical behavior: the most
existing solution is practicableness and needs
to adopt more scenarios to be more realistic.

Consequently, we think that defeating SQL injec-
tion attacks needs to combine detection as well as
prevention. The prevention can avoid losses and keep
the web-based system safe. This goal can be done by
combining a set of prevention and detection methods
that can effectively block most attacks. Furthermore,
we think that reinforcement learning can be a very
promising solution to this problem. Reinforcement
learning can combine more than one technique to
provide the best detection result to avoid web-based
system damage.

7 Conclusion

One of the most common threats to web applications
is SQLIA. To provide security and integrity, web ap-
plications must protect their databases from a variety
of threats. In SQLIA, attackers can assault the ap-
plication with a designed query statement via a web

input form, steal identities, gain access to confidential
information, and tamper with available data, all of
which can have catastrophic consequences. This pa-
per is looking deeper into the background of SQLIA
and its various types. In addition, the literature re-
view covers a lot of researchers’ proposed methods
as well as their findings. Also, the paper discusses in
detail some open issues and future trends of solutions
in this context.

References

[1] Kyriakos Kritikos, Kostas Magoutis, Manos Pa-
poutsakis, and Sotiris Ioannidis. A survey on
vulnerability assessment tools and databases for
cloud-based web applications. Array, 3:100011,
2019.

[2] BH HemaMalini, L Suresh, and Mayank Kushal.
Comprehensive analysis of students’ performance
by applying machine learning techniques. In
Smart Intelligent Computing and Applications,
pages 547–556. Springer, 2020.

[3] Igor Tasevski and Kire Jakimoski. Overview of
sql injection defense mechanisms. In 2020 28th
Telecommunications Forum (TELFOR), pages
1–4. IEEE, 2020.

[4] Solomon Ogbomon Uwagbole, William J

ISeCure



8 A Review Study on SQL Injection Attacks, Prevention, and Detection — Alsalamah et al.

Table 4. Features of GET and POST methods

Ref Description Technique Result

[6]

The authors proposed an approach

for SQL injection detection

based on artificial neural network

Artificial

neural

network

Experimental findings suggest that other neural

network models are superior to the extracting features.

[7]

The authors are introducing a method

that uses the Knuth-Morris-Pratt

(KMP) pattern-matching algorithm

to identify and avoid these attacks

Knuth-

Morris-

Pratt (KMP)

an approach was able to efficiently identify and deter attacks,

record the attack entered in the database, block the device

using the mac address, and also create a warning code.

[16]

Paper proposed a component-based

approach to mitigate the occurrence

of incorrect effects, as well as to make it

easier to improve the solution suggested.

Component-based

approach

The result analysis reveals that the suggested solution will

effectively complete the SQLA stored procedure and execute

vulnerability by evaluating the page’s internal structure

[8]

This study proposed an SQLA scanner

by using black-box testing aims to report

the highest number of vulnerabilities

with the least amount of false alarms.

Black-box testing

Provides an algorithm for the proposed SQL injection

vulnerability scanner and its implementation using JavaScript,

and experience it on three target applications.

[4]

Suggests, combining machine learning

with SQL Injection Attack

Detection and Prevention.

Applied Machine

Learning

Predictive Analytics

As a web service consumed in a dot NET application,

the trained classifier is published to intercept SQLIA.

[9]

Paper proposed a framework for

detection of SQLA based on

two techniques: fingerprinting method

and Pattern Matching

Fingerprinting method

and

Pattern Matching

The framework works to speed up the process

of detecting malicious queries.

[10]

Paper proposed an approach that

detects a question token using

a reserved words-based lexicon.

Words lexicon

The proposed system is done for successful prevention from

the various malicious queries for injections, and accuracy

is very good

[11]

By using Removing the Parameter

Values of SQL Query, the paper provides

a SQL detection and prevention mechanism.

Removing the Parameter

Values of SQL Query

A simple and strong method that is easy to implement to

maintain the database secure

[12]

The study investigated the GreenSQL

database firewall, by building an

abstract set of sets

GreenSQL database

After GreenSQL has finished learning, use the obtained white

list as an input. IPS evaluates the commands, before putting the

white list into firewall mode to effectively preserve the

back-platform database’s protection.

[13]

Use query tokenization in order to

detect and prevent SQL attacks.

The proposed work is done in 6 steps

Query tokenization

An experimental study shows that most of the common SQL

injection attacks are detected or even prevented using

query tokenization.

[14]

Using machine learning with the Support

Vector Machine (SVM) to deal

with the problem of detecting

and preventing SQL attack

Support Vector

Machine (SVM)

with machine learning

The results show good performance in terms of detection

which are evaluated empirically in big data environment

[15]

A framework combining a model of

natural language processing and

deep-learning technique. It is permitting

the machine to automatically learn

the SQL injection attacks language, model.

Deep learning

with natural

language processing

Enhance the accuracy, decrease the false alarm rate and

reduce the intervention of humans in addition to providing

an acceptable level of defense against 0-day attacks.

Buchanan, and Lu Fan. Applied machine learn-
ing predictive analytics to sql injection attack de-
tection and prevention. In 2017 IFIP/IEEE Sym-
posium on Integrated Network and Service Man-
agement (IM), pages 1087–1090. IEEE, 2017.

[5] Haiyan Zhang and Xiao Zhang. Sql injection
attack principles and preventive techniques for
php site. In Proceedings of the 2nd International
Conference on Computer Science and Applica-
tion Engineering, pages 1–9, 2018.

[6] Peng Tang, Weidong Qiu, Zheng Huang, Huijuan
Lian, and Guozhen Liu. Detection of sql injection
based on artificial neural network. Knowledge-
Based Systems, 190:105528, 2020.

[7] Oluwakemi Christiana Abikoye, Abdullahi
Abubakar, Ahmed Haruna Dokoro, Oluwa-
tobi Noah Akande, and Aderonke Anthonia Kay-
ode. A novel technique to prevent sql injec-
tion and cross-site scripting attacks using knuth-
morris-pratt string match algorithm. EURASIP
Journal on Information Security, 2020(1):1–14,
2020.

[8] Muhammad Saidu Aliero, Imran Ghani,
Kashif Naseer Qureshi, and Mohd Fo’ad Ro-
hani. An algorithm for detecting sql injection
vulnerability using black-box testing. Journal of
Ambient Intelligence and Humanized Computing,
11(1):249–266, 2020.

ISeCure



November 2021, Volume 13, Number 3 (pp. 1–9) 9

[9] Benjamin Appiah, Eugene Opoku-Mensah, and
Zhiguang Qin. Sql injection attack detection us-
ing fingerprints and pattern matching technique.
In 2017 8th IEEE International Conference on
Software Engineering and Service Science (IC-
SESS), pages 583–587. IEEE, 2017.

[10] Zar Chi Su Su Hlaing and Myo Khaing. A detec-
tion and prevention technique on sql injection
attacks. In 2020 IEEE Conference on Computer
Applications (ICCA), pages 1–6. IEEE, 2020.

[11] Rajashree A Katole, Swati S Sherekar, and Vi-
las M Thakare. Detection of sql injection at-
tacks by removing the parameter values of sql
query. In 2018 2nd International Conference on
Inventive Systems and Control (ICISC), pages
736–741. IEEE, 2018.

[12] Pan Lin, Wang Jinshuang, Chen Ping, and Yang
Lanjuan. Sql injection attack and detection
based on greensql pattern input whitelist. In
2020 IEEE 3rd International Conference on In-
formation Systems and Computer Aided Educa-
tion (ICISCAE), pages 187–190. IEEE, 2020.

[13] Vedant Singh and Vrinda Yadav. Survey of
blockchain applications in database security. In
Advances in Distributed Computing and Machine
Learning, pages 147–154. Springer, 2021.

[14] Venkata Vamsikrishna Meduri, Kanchan Chowd-
hury, and Mohamed Sarwat. Evaluation of ma-
chine learning algorithms in predicting the next
sql query from the future. ACM Transactions
on Database Systems (TODS), 46(1):1–46, 2021.

[15] Ding Chen, Qiseng Yan, Chunwang Wu, and
Jun Zhao. Sql injection attack detection and
prevention techniques using deep learning. In
Journal of Physics: Conference Series, volume
1757, page 012055. IOP Publishing, 2021.

[16] Muhammad Saidu Aliero, Kashif Naseer Qureshi,
Muhammad Fermi Pasha, Awais Ahmad, and
Gwanggil Jeon. Detection of structure query
language injection vulnerability in web driven
database application. Concurrency and Com-
putation: Practice and Experience, page e5936,
2020.

[17] Jianwei Hu, Wei Zhao, and Yanpeng Cui. A sur-
vey on sql injection attacks, detection and pre-
vention. In Proceedings of the 2020 12th Inter-
national Conference on Machine Learning and
Computing, pages 483–488, 2020.

Mona Alsalamah is a graduated
student from the Information Tech-
nology department since 2014, Col-
lege of Computer, Qassim University,
Buraydah 51941, Saudi Arabia. She
is currently a Master’s thesis student
in the cybersecurity program at the

Department of Information Technology, College of
Computer, Qassim University, Saudi Arabia.

Huda Alwabli is a graduated stu-
dent from the Computer Science de-
partment since 2012 with an excel-
lent grade with an honors degree,
College of Computer, Qassim Univer-
sity, Saudi Arabia. In addition, she
studied the Higher Diploma in Cy-

ber Security from Qassim University in 2020 excellent
with honors. She is currently a Master’s thesis stu-
dent in the cybersecurity program at the Department
of Information Technology, College of Computer, Qas-
sim University, Buraydah 51941, Saudi Arabia. She
is a teacher of computer science in the Ministry of
Education.

Hutaf Alqwifli is a graduated stu-
dent from Computer Science depart-
ment since 2018. She is currently a
Master thesis student in cybersecu-
rity program at Department of Infor-
mation Technology, College of Com-
puter, Qassim University, Buraydah

51941, Saudi Arabia.

Dina M. Ibrahim Assistant Pro-
fessor at Department of Information
Technology, College of Computer,
Qassim University, Buraydah, Saudi
Arabia from September 2015 till now.
In addition, Dina works as an Assis-
tant Professor in the Computers and

Control Engineering Department, Faculty of Engi-
neering, Tanta University, Egypt. She was born in
the United Arab Emirates, and her B.Sc., M.Sc., and
Ph.D. degrees have taken from the Computers and
Control Engineering Department, Faculty of Engi-
neering, Tanta University in 2002, 2008, and 2014,
respectively. Dina works as a Consultant Engineer,
then a Database administrator, and finally acts as a
Vice Manager on Management Information Systems
(MIS) Project, Tanta University, Egypt, from 2008
until 2014. Her research interests include networking,
wireless communications, machine learning, security,
and the Internet of Things. She is serving as a re-
viewer in Wireless Network (WINE) the Journal of
Mobile Communication, Computation, and Informa-
tion since 2015, and recently in the International Jour-
nal of Supply and Operations Management (IJSOM).
Dina has also acts as a Co-Chair of the International
Technical Committee for the Middle East Region of
the ICCMIT conference since 2020.

ISeCure


	1 Introduction
	2 Background of SQL Injection Attack
	3 Types of SQL Injection Attacks
	3.1 Error-Based SQL Injection
	3.2 Boolean-Based Blind SQL Injection
	3.3 Time-Based Blind SQL Injection
	3.4 Union-Based SQL Injection
	3.5 Out-Of-Band SQL Injection
	3.6 Blind SQL Injection

	4 Causes of SQL Injection in Database
	5 Related Work
	6 Open Issues and Future Trends for Preventing and Detecting SQL Injection Attacks
	7 Conclusion

